import typing
import phenopackets as pp202
from google.protobuf.message import Message
from ._base import File
from ._biosample import Biosample
from ._individual import Individual
from ._interpretation import Interpretation
from ._measurement import Measurement
from ._medical_action import MedicalAction
from ._phenotypic_feature import PhenotypicFeature
from ._disease import Disease
from ._meta_data import MetaData
from .._api import MessageMixin
from ..parse import extract_message_scalar, extract_message_sequence, extract_pb_message_scalar, extract_pb_message_seq
[docs]
class Phenopacket(MessageMixin):
    def __init__(
            self,
            id: str,
            meta_data: MetaData,
            subject: typing.Optional[Individual] = None,
            phenotypic_features: typing.Optional[typing.Iterable[PhenotypicFeature]] = None,
            measurements: typing.Optional[typing.Iterable[Measurement]] = None,
            biosamples: typing.Optional[typing.Iterable[Biosample]] = None,
            interpretations: typing.Optional[typing.Iterable[Interpretation]] = None,
            diseases: typing.Optional[typing.Iterable[Disease]] = None,
            medical_actions: typing.Optional[typing.Iterable[MedicalAction]] = None,
            files: typing.Optional[typing.Iterable[File]] = None,
    ):
        self._id = id
        self._subject = subject
        self._phenotypic_features = [] if phenotypic_features is None else list(phenotypic_features)
        self._measurements = [] if measurements is None else list(measurements)
        self._biosamples = [] if biosamples is None else list(biosamples)
        self._interpretations = [] if interpretations is None else list(interpretations)
        self._diseases = [] if diseases is None else list(diseases)
        self._medical_actions = [] if medical_actions is None else list(medical_actions)
        self._files = [] if files is None else list(files)
        self._meta_data = meta_data
    @property
    def id(self) -> str:
        return self._id
    @id.setter
    def id(self, value: str):
        self._id = value
    @property
    def subject(self) -> typing.Optional[Individual]:
        return self._subject
    @subject.setter
    def subject(self, value: Individual):
        self._subject = value
    @subject.deleter
    def subject(self):
        self._subject = None
    @property
    def phenotypic_features(self) -> typing.MutableSequence[PhenotypicFeature]:
        return self._phenotypic_features
    @property
    def measurements(self) -> typing.MutableSequence[Measurement]:
        return self._measurements
    @property
    def biosamples(self) -> typing.MutableSequence[Biosample]:
        return self._biosamples
    @property
    def interpretations(self) -> typing.MutableSequence[Interpretation]:
        return self._interpretations
    @property
    def diseases(self) -> typing.MutableSequence[Disease]:
        return self._diseases
    @property
    def medical_actions(self) -> typing.MutableSequence[MedicalAction]:
        return self._medical_actions
    @property
    def files(self) -> typing.MutableSequence[File]:
        return self._files
    @property
    def meta_data(self) -> MetaData:
        return self._meta_data
    @meta_data.setter
    def meta_data(self, value: MetaData):
        self._meta_data = value
[docs]
    @staticmethod
    def field_names() -> typing.Iterable[str]:
        return (
            'id', 'subject', 'phenotypic_features', 'measurements', 'biosamples',
            'interpretations', 'diseases', 'medical_actions', 'files', 'meta_data',
        ) 
[docs]
    @classmethod
    def required_fields(cls) -> typing.Sequence[str]:
        return 'id', 'meta_data' 
[docs]
    @classmethod
    def from_dict(cls, values: typing.Mapping[str, typing.Any]):
        if cls._all_required_fields_are_present(values):
            return Phenopacket(
                id=values['id'],
                subject=extract_message_scalar('subject', Individual, values),
                phenotypic_features=extract_message_sequence('phenotypic_features', PhenotypicFeature, values),
                measurements=extract_message_sequence('measurements', Measurement, values),
                biosamples=extract_message_sequence('biosamples', Biosample, values),
                interpretations=extract_message_sequence('interpretations', Interpretation, values),
                diseases=extract_message_sequence('diseases', Disease, values),
                medical_actions=extract_message_sequence('medical_actions', MedicalAction, values),
                files=extract_message_sequence('files', File, values),
                meta_data=extract_message_scalar('meta_data', MetaData, values),
            )
        else:
            cls._complain_about_missing_field(values) 
[docs]
    def to_message(self) -> Message:
        return pp202.Phenopacket(
            id=self._id,
            subject=self._subject.to_message(),
            phenotypic_features=(pf.to_message() for pf in self._phenotypic_features),
            measurements=(m.to_message() for m in self._measurements),
            biosamples=(b.to_message() for b in self._biosamples),
            interpretations=(i.to_message() for i in self._interpretations),
            diseases=(d.to_message() for d in self._diseases),
            medical_actions=(ma.to_message() for ma in self._medical_actions),
            files=(f.to_message() for f in self._files),
            meta_data=self._meta_data.to_message(),
        ) 
[docs]
    @classmethod
    def message_type(cls) -> typing.Type[Message]:
        return pp202.Phenopacket 
[docs]
    @classmethod
    def from_message(cls, msg: Message):
        if isinstance(msg, pp202.Phenopacket):
            return Phenopacket(
                id=msg.id,
                subject=extract_pb_message_scalar('subject', Individual, msg),
                phenotypic_features=extract_pb_message_seq('phenotypic_features', PhenotypicFeature, msg),
                measurements=extract_pb_message_seq('measurements', Measurement, msg),
                biosamples=extract_pb_message_seq('biosamples', Biosample, msg),
                interpretations=extract_pb_message_seq('interpretations', Interpretation, msg),
                diseases=extract_pb_message_seq('diseases', Disease, msg),
                medical_actions=extract_pb_message_seq('medical_actions', MedicalAction, msg),
                files=extract_pb_message_seq('files', File, msg),
                meta_data=extract_pb_message_scalar('meta_data', MetaData, msg),
            )
        else:
            cls.complain_about_incompatible_msg_type(msg) 
    def __eq__(self, other):
        return isinstance(other, Phenopacket) \
            
and self._id == other._id \
            
and self._subject == other._subject \
            
and self._phenotypic_features == other._phenotypic_features \
            
and self._measurements == other._measurements \
            
and self._biosamples == other._biosamples \
            
and self._interpretations == other._interpretations \
            
and self._diseases == other._diseases \
            
and self._medical_actions == other._medical_actions \
            
and self._files == other._files \
            
and self._meta_data == other._meta_data
    def __repr__(self):
        return f'Phenopacket(' \
               
f'id={self._id}, ' \
               
f'subject={self._subject}, ' \
               
f'phenotypic_features={self._phenotypic_features}, ' \
               
f'measurements={self._measurements}, ' \
               
f'biosamples={self._biosamples}, ' \
               
f'interpretations={self._interpretations}, ' \
               
f'diseases={self._diseases}, ' \
               
f'medical_actions={self._medical_actions}, ' \
               
f'files={self._files}, ' \
               
f'meta_data={self._meta_data})'