Skip to content

CaseTemplateEncoder

Class to encode data from user-provided Excel template.

Parameters:

Name Type Description Default
df DataFrame

template table with clinical data

required
hpo_cr HpoConceptRecognizer

HpoConceptRecognizer for text mining

required
created_by str

biocurator (typically, this should be an ORCID identifier)

required
Source code in pyphetools/creation/case_template_encoder.py
class CaseTemplateEncoder:
    """Class to encode data from user-provided Excel template.

    :param df: template table with clinical data
    :type df: pd.DataFrame
    :param hpo_cr: HpoConceptRecognizer for text mining
    :type hpo_cr: pyphetools.creation.HpoConceptRecognizer
    :param created_by: biocurator (typically, this should be an ORCID identifier)
    :type created_by: str
    """

    HPO_VERSION = None

    def __init__(self, df:pd.DataFrame, hpo_cr:HpoConceptRecognizer, created_by:str, hpo_ontology:hpotk.MinimalOntology) -> None:
        """constructor
        """
        if not isinstance(df, pd.DataFrame):
            raise ValueError(f"argument \"df\" must be pandas DataFrame but was {type(df)}")
        self._individuals = []
        self._errors = []
        self._ntr_set = set()
        header_1 = df.columns.values.tolist()
        header_2 = df.loc[0, :].values.tolist()
        if len(header_1) != len(header_2):
            # should never happen unless the template file is corrupted
            raise ValueError("headers are different lengths. Check template file for correctness.")
        # check headers are well formed
        required_h1 = REQUIRED_H1_FIELDS
        required_h2 = REQUIRED_H2_FIELDS
        for i in range(len(required_h1)):
            if header_1[i] != required_h1[i]:
                raise ValueError(f"Malformed header 1 field at index {i}. Expected \"{required_h1[i]}\" but got \"{header_1[i]}\"")
            if header_2[i] != required_h2[i]:
                raise ValueError(f"Malformed header 2 field at index {i}. Expected \"{required_h2[i]}\" but got \"{header_2[i]}\"")
        self._header_fields_1 = header_1
        self._n_columns = len(header_1)
        self._index_to_decoder = self._process_header(header_1=header_1, header_2=header_2, hpo_cr=hpo_cr)
        data_df = df.iloc[1:]
        self._check_for_duplicate_individual_ids(data_df)
        self._is_biallelic = "allele_2" in header_1
        self._allele1_d = {}
        self._allele2_d = {}
        for _, row in data_df.iterrows():
            individual = self._parse_individual(row)
            self._individuals.append(individual)
            self._allele1_d[individual.id] = row["allele_1"]
            if self._is_biallelic:
                self._allele2_d[individual.id] = row["allele_2"]
        CaseTemplateEncoder.HPO_VERSION = hpo_ontology.version
        self._created_by = created_by
        self._metadata_d = {}
        for i in self._individuals:
            cite = i.get_citation()
            metadata = MetaData(created_by=created_by, citation=cite)
            metadata.default_versions_with_hpo(CaseTemplateEncoder.HPO_VERSION)
            self._metadata_d[i.id] = metadata

    def  _process_header(self, 
                         header_1:typing.List[str], 
                         header_2:typing.List[str], 
                         hpo_cr:HpoConceptRecognizer) -> typing.Dict[int, CellEncoder]:
        index_to_decoder_d = {}
        in_hpo_range = False
        for i in range(self._n_columns):
            h1 = header_1[i]
            h2 = header_2[i]
            if isinstance(h1, float) or len(h1) == 0:
                raise ValueError(f"Error: Empty column header at column {i}")
            if h1 == "HPO":
                in_hpo_range = True
                index_to_decoder_d[i] = NullEncoder()
                continue
            if h1 == "Miscellaneous":
                index_to_decoder_d[i] = MiscEncoder(h1=h1, h2=h2, hpo_cr=hpo_cr)
            elif not in_hpo_range:
                if h1 in EXPECTED_HEADERS:
                    index_to_decoder_d[i] = DataEncoder(h1=h1, h2=h2)
                else:
                    raise ValueError(f"Malformed template header at column {i}: \"{h1}\"")
            elif in_hpo_range:
                ntr =  h2 == "NTR"
                encoder = HpoEncoder(h1=h1, h2=h2, ntr=ntr)
                if ntr:
                    self._ntr_set.add(h1)
                    index_to_decoder_d[i] = encoder
                elif encoder.needs_attention():
                    self._errors.append(encoder.get_error())
                    index_to_decoder_d[i] = NullEncoder()
                else:
                    index_to_decoder_d[i] = encoder
        if not in_hpo_range:
            raise ValueError("Did not find HPO boundary column")
        print(f"Created encoders for {len(index_to_decoder_d)} fields")
        if len(self._ntr_set) > 0:
            print("[WARNING] Template contains new term requests (NTR). These columns will be ignored until they are replaced with HPO terms")
            for ntr in self._ntr_set:
                print("\tNTR: ", ntr)
        if len(self._errors) > 0:
            for e in self._errors:
                print(f"ERROR: {e}")
        return index_to_decoder_d

    def _check_for_duplicate_individual_ids(self, 
                                            df:pd.DataFrame) -> None:
        """Check that no two individuals in the dataframe have the same identifier
        Duplicate identifiers can lead to other errors in the code
        An identifier is made from the combination of PMID and individual_id and must be unique
        If there is one or mure duplicates, this function will throw a value error.
        """
        if not "individual_id" in df.columns:
            raise ValueError(f"Malformed template headers - could not find column \"individual_id\"")
        if not "PMID" in df.columns:
            raise ValueError(f"Malformed template headers - could not find column \"individual_id\"")
        seen_ids = set()
        errors = list()
        for _, row in df.iterrows():
            individual_id = row["individual_id"]
            pmid = row["PMID"]
            composite_id = f"{pmid}_{individual_id}"
            if composite_id in seen_ids:
                errors.append(f"Duplicate identifier: {composite_id}")
            else:
                seen_ids.add(composite_id)
        if len(errors) > 0:
            err_str = "\n".join(errors)
            raise ValueError(err_str)
        # else, all is OK, no duplicate ids

    def _parse_individual(self, 
                          row:pd.Series) -> Individual:
        """
        Parse one row of the Data ingest (Excel) template, corresponding to one individual
        """
        if not isinstance(row, pd.Series):
            raise ValueError(f"argument df must be pandas Series but was {type(row)}")
        data = row.values.tolist()
        if len(data) != self._n_columns:
            # Should never happen
            raise ValueError(f"Divergent number of columns: header {self._n_columns} but data row {len(data)}: {data}")
        data_items = {}
        hpo_terms = list()
        for i in range(self._n_columns):
            encoder = self._index_to_decoder.get(i)
            cell_contents = data[i]
            if encoder is None:
                print(f"Encoder for column {i} was None for data \"{cell_contents}\"")
                self._debug_row(i, row)
                raise ValueError(f"Encoder for column {i} was None for data \"{cell_contents}\"")
            elif encoder.columntype == CellType.NTR:
                continue ## cannot be use yet because new term request.
            encoder_type = encoder.columntype()
            if encoder_type == CellType.DATA and encoder.name in DATA_ITEMS:
                data_items[encoder.name] = encoder.encode(cell_contents)
            elif encoder_type == CellType.HPO:
                try:
                    hpoterm = encoder.encode(cell_contents)
                    if hpoterm is not None:
                        hpo_terms.append(hpoterm)
                except Exception as hpo_parse_exception:
                    errr = f"Could not parse contents of HPO column {encoder.name}: {cell_contents} because of {str(hpo_parse_exception)}"
                    print(errr)
                    raise ValueError(errr)
            elif encoder_type == CellType.MISC:
                term_list = encoder.encode(cell_contents=cell_contents)
                for trm in term_list:
                    hpo_terms.append(trm)
        # Check we have all of the items we need
        for item in data_items.keys():
            if item not in DATA_ITEMS:
                raise ValueError(f"Unrecognized data item: \"{item}\"")
        #Note that allele_2 is optional
        if len(data_items) < len(DATA_ITEMS) - 1:
            raise ValueError(f"Insufficient data items: \"{data_items}\"")
        # If we get here, we can contruct an individual
        individual_id = data_items.get('individual_id')
        if individual_id is None or isinstance(individual_id, float) or len(individual_id) == 0:
            raise ValueError(f"Empty individual_id field for {row}")
        pmid = data_items.get("PMID")
        title = data_items.get("title")
        if pmid is None or isinstance(pmid, float) or not pmid.startswith("PMID"):
            raise ValueError(f"Could not find PubMed identifier for {individual_id}")
        if title is None or isinstance(title, float) or len(title) < 5:
            raise ValueError(f"Could not find valid title for {individual_id}")
        citation = Citation(pmid=pmid, title=title)
        sex = data_items.get("sex")
        if sex == "M":
            sex = Constants.MALE_SYMBOL
        elif sex == "F":
            sex = Constants.FEMALE_SYMBOL
        elif sex == "O":
            sex = Constants.OTHER_SEX_SYMBOL
        elif sex == "U":
            sex = Constants.UNKNOWN_SEX_SYMBOL
        else:
            raise ValueError(f"Unrecognized sex symbol: {sex} for individual \"{individual_id}\"")
        onset_age = data_items.get(AGE_OF_ONSET_FIELDNAME)
        if onset_age is not None and isinstance(onset_age, str):
            onset_age = PyPheToolsAge.get_age_pp201(onset_age)
        else:
            onset_age = None
        encounter_age = data_items.get(AGE_AT_LAST_ENCOUNTER_FIELDNAME)
        if encounter_age is not None and isinstance(encounter_age, str):
            encounter_age = PyPheToolsAge.get_age_pp201(encounter_age)
        else:
            encounter_age = None
        vitStat = None
        # deceased is a required field from version 0.9.112 on
        decsd = data_items.get("deceased")
        if decsd == "yes" and encounter_age is not None:
            vitStat = VitalStatus(status=VitalStatus.Status.DECEASED, time_of_death=encounter_age)
        elif decsd == "no":
            vitStat = VitalStatus(status=VitalStatus.Status.ALIVE)
        else:
            vitStat = VitalStatus(status=VitalStatus.Status.UNKNOWN_STATUS)
        disease_id = data_items.get("disease_id")
        disease_label = data_items.get("disease_label")
        # common error -- e.g. PMID: 3000312 or OMIM: 600123 (whitespace after colon)
        for item in [pmid, disease_id]:
            if " " in item:
                raise ValueError(f"Found illegal whitespace in {item}. Please remove it and try again")
        disease = Disease(disease_id=disease_id, disease_label=disease_label)
        return Individual(individual_id=individual_id,
                            citation=citation,
                            hpo_terms=hpo_terms,
                            sex=sex,
                            age_of_onset=onset_age,
                            age_at_last_encounter=encounter_age,
                            vital_status=vitStat,
                            disease=disease)

    def _debug_row(self, target_idx:int, row:pd.Series):
        row_items = list(row)
        for j in range(len(row_items)):
            hdr = self._header_fields_1[j]
            if j == target_idx:
                print(f"[{j}] *** {hdr}={row_items[j]}  ***")
            else:
                print(f"[{j}] {hdr}={row_items[j]}")

    def get_individuals(self) -> typing.List[Individual]:
        return self._individuals

    def get_allele1_d(self)-> typing.Dict[str,str]:
        return self._allele1_d

    def get_allele2_d(self)-> typing.Dict[str,str]:
        return self._allele2_d

    def _is_biallelic(self) -> bool:
        return self._is_biallelic

    def get_metadata_d(self) -> typing.Dict[str,MetaData]:
        return self._metadata_d

    def get_phenopackets(self) -> typing.List[PPKt.Phenopacket]:
        ppack_list = []
        for individual in self._individuals:
            cite = individual.get_citation()
            metadata = MetaData(created_by=self._created_by, citation=cite)
            metadata.default_versions_with_hpo(CaseTemplateEncoder.HPO_VERSION)
            phenopckt = individual.to_ga4gh_phenopacket(metadata=metadata)
            ppack_list.append(phenopckt)
        return ppack_list



    def _transform_individuals_to_phenopackets(self, 
                                               individual_list:typing.List[Individual]):
        """Create one phenopacket for each of the individuals

        :param individual_list: List of individual objects
        :type individual_list:List[Individual]
        :returns: list of corresponding phenopackets
        :rtype: List[PPKt.Phenopacket]
        """
        ppkt_list = list()
        if self._created_by is None:
            created_by = 'pyphetools'
        else:
            created_by = self._created_by
        for individual in individual_list:
            cite = individual.get_citation()
            metadata = MetaData(created_by=created_by, citation=cite)
            metadata.default_versions_with_hpo(CaseTemplateEncoder.HPO_VERSION)
            phenopckt = individual.to_ga4gh_phenopacket(metadata=metadata)
            ppkt_list.append(phenopckt)
        return ppkt_list

    def output_individuals_as_phenopackets(self, 
                                           individual_list:typing.List[Individual], 
                                           outdir:str="phenopackets") -> None:
        """write a list of Individual objects to file in GA4GH Phenopacket format
        Note that the individual_list needs to be passed to this object, because we expect that
        the QC code will have been used to cleanse the data of redundancies etc before output.
        We use the statefullness to keep track of the created_by argument from the constructor

        :param outdir: Path to output directory. Defaults to "phenopackets". Created if not exists.
        :type outdir: str
        """
        if os.path.isfile(outdir):
            raise ValueError(f"Attempt to create directory with name of existing file {outdir}")
        if not os.path.isdir(outdir):
            os.makedirs(outdir)
        written = 0

        if self._created_by is None:
            created_by = 'pyphetools'
        else:
            created_by = self._created_by
        for individual in individual_list:
            cite = individual.get_citation()
            metadata = MetaData(created_by=created_by, citation=cite)
            metadata.default_versions_with_hpo(CaseTemplateEncoder.HPO_VERSION)
            phenopckt = individual.to_ga4gh_phenopacket(metadata=metadata)
            json_string = MessageToJson(phenopckt)
            pmid = cite.pmid
            if pmid is None:
                fname = "phenopacket_" + individual.id
            else:
                pmid = pmid.replace(" ", "").replace(":", "_")
                fname = pmid + "_" + individual.id
            fname = re.sub('[^A-Za-z0-9\_\-]', '', fname)  # remove any illegal characters from filename
            fname = fname.replace(" ", "_") + ".json"
            outpth = os.path.join(outdir, fname)
            with open(outpth, "wt") as fh:
                fh.write(json_string)
                written += 1
        print(f"We output {written} GA4GH phenopackets to the directory {outdir}")


    def print_individuals_as_phenopackets(self, 
                                          individual_list:typing.List[Individual]) -> None:
        """Function designed to show all phenopackets in a notebook for Q/C
        :param individual_list: List of individual objects
        :type individual_list:List[Individual]
        """
        ppkt_list = self._transform_individuals_to_phenopackets(individual_list)
        for ppkt in ppkt_list:
            json_string = MessageToJson(ppkt)
            print("####")
            print(json_string)


    def to_summary(self) -> pd.DataFrame:
        """

        The table provides a summary of the table that was parsed from the input file. If there were errors, it
        provides enough feedback so that the user knows what needs to be fixed

        :returns: an table with status of parse
        :rtype: pd.DataFrame
        """
        n_error = 0
        items = []
        for e in self._errors:
            n_error += 1
            d = {'item': f"Error {n_error}", 'value': e}
            items.append(d)
        d = {'item': 'created by', 'value':self._created_by}
        items.append(d)
        d = {'item':'number of individuals', 'value': str(len(self._individuals))}
        items.append(d)
        n_hpo_columns = sum([1 for encoder in self._index_to_decoder.values() if encoder.is_hpo()])
        d = {'item':'number of HPO columns', 'value': str(n_hpo_columns)}
        items.append(d)
        return pd.DataFrame(items)

__init__(df, hpo_cr, created_by, hpo_ontology)

constructor

Source code in pyphetools/creation/case_template_encoder.py
def __init__(self, df:pd.DataFrame, hpo_cr:HpoConceptRecognizer, created_by:str, hpo_ontology:hpotk.MinimalOntology) -> None:
    """constructor
    """
    if not isinstance(df, pd.DataFrame):
        raise ValueError(f"argument \"df\" must be pandas DataFrame but was {type(df)}")
    self._individuals = []
    self._errors = []
    self._ntr_set = set()
    header_1 = df.columns.values.tolist()
    header_2 = df.loc[0, :].values.tolist()
    if len(header_1) != len(header_2):
        # should never happen unless the template file is corrupted
        raise ValueError("headers are different lengths. Check template file for correctness.")
    # check headers are well formed
    required_h1 = REQUIRED_H1_FIELDS
    required_h2 = REQUIRED_H2_FIELDS
    for i in range(len(required_h1)):
        if header_1[i] != required_h1[i]:
            raise ValueError(f"Malformed header 1 field at index {i}. Expected \"{required_h1[i]}\" but got \"{header_1[i]}\"")
        if header_2[i] != required_h2[i]:
            raise ValueError(f"Malformed header 2 field at index {i}. Expected \"{required_h2[i]}\" but got \"{header_2[i]}\"")
    self._header_fields_1 = header_1
    self._n_columns = len(header_1)
    self._index_to_decoder = self._process_header(header_1=header_1, header_2=header_2, hpo_cr=hpo_cr)
    data_df = df.iloc[1:]
    self._check_for_duplicate_individual_ids(data_df)
    self._is_biallelic = "allele_2" in header_1
    self._allele1_d = {}
    self._allele2_d = {}
    for _, row in data_df.iterrows():
        individual = self._parse_individual(row)
        self._individuals.append(individual)
        self._allele1_d[individual.id] = row["allele_1"]
        if self._is_biallelic:
            self._allele2_d[individual.id] = row["allele_2"]
    CaseTemplateEncoder.HPO_VERSION = hpo_ontology.version
    self._created_by = created_by
    self._metadata_d = {}
    for i in self._individuals:
        cite = i.get_citation()
        metadata = MetaData(created_by=created_by, citation=cite)
        metadata.default_versions_with_hpo(CaseTemplateEncoder.HPO_VERSION)
        self._metadata_d[i.id] = metadata

output_individuals_as_phenopackets(individual_list, outdir='phenopackets')

write a list of Individual objects to file in GA4GH Phenopacket format Note that the individual_list needs to be passed to this object, because we expect that the QC code will have been used to cleanse the data of redundancies etc before output. We use the statefullness to keep track of the created_by argument from the constructor

Parameters:

Name Type Description Default
outdir str

Path to output directory. Defaults to "phenopackets". Created if not exists.

'phenopackets'
Source code in pyphetools/creation/case_template_encoder.py
def output_individuals_as_phenopackets(self, 
                                       individual_list:typing.List[Individual], 
                                       outdir:str="phenopackets") -> None:
    """write a list of Individual objects to file in GA4GH Phenopacket format
    Note that the individual_list needs to be passed to this object, because we expect that
    the QC code will have been used to cleanse the data of redundancies etc before output.
    We use the statefullness to keep track of the created_by argument from the constructor

    :param outdir: Path to output directory. Defaults to "phenopackets". Created if not exists.
    :type outdir: str
    """
    if os.path.isfile(outdir):
        raise ValueError(f"Attempt to create directory with name of existing file {outdir}")
    if not os.path.isdir(outdir):
        os.makedirs(outdir)
    written = 0

    if self._created_by is None:
        created_by = 'pyphetools'
    else:
        created_by = self._created_by
    for individual in individual_list:
        cite = individual.get_citation()
        metadata = MetaData(created_by=created_by, citation=cite)
        metadata.default_versions_with_hpo(CaseTemplateEncoder.HPO_VERSION)
        phenopckt = individual.to_ga4gh_phenopacket(metadata=metadata)
        json_string = MessageToJson(phenopckt)
        pmid = cite.pmid
        if pmid is None:
            fname = "phenopacket_" + individual.id
        else:
            pmid = pmid.replace(" ", "").replace(":", "_")
            fname = pmid + "_" + individual.id
        fname = re.sub('[^A-Za-z0-9\_\-]', '', fname)  # remove any illegal characters from filename
        fname = fname.replace(" ", "_") + ".json"
        outpth = os.path.join(outdir, fname)
        with open(outpth, "wt") as fh:
            fh.write(json_string)
            written += 1
    print(f"We output {written} GA4GH phenopackets to the directory {outdir}")

print_individuals_as_phenopackets(individual_list)

Function designed to show all phenopackets in a notebook for Q/C

Parameters:

Name Type Description Default
individual_list List[Individual]

List of individual objects

required
Source code in pyphetools/creation/case_template_encoder.py
def print_individuals_as_phenopackets(self, 
                                      individual_list:typing.List[Individual]) -> None:
    """Function designed to show all phenopackets in a notebook for Q/C
    :param individual_list: List of individual objects
    :type individual_list:List[Individual]
    """
    ppkt_list = self._transform_individuals_to_phenopackets(individual_list)
    for ppkt in ppkt_list:
        json_string = MessageToJson(ppkt)
        print("####")
        print(json_string)

to_summary()

The table provides a summary of the table that was parsed from the input file. If there were errors, it provides enough feedback so that the user knows what needs to be fixed

Returns:

Type Description
pd.DataFrame

an table with status of parse

Source code in pyphetools/creation/case_template_encoder.py
def to_summary(self) -> pd.DataFrame:
    """

    The table provides a summary of the table that was parsed from the input file. If there were errors, it
    provides enough feedback so that the user knows what needs to be fixed

    :returns: an table with status of parse
    :rtype: pd.DataFrame
    """
    n_error = 0
    items = []
    for e in self._errors:
        n_error += 1
        d = {'item': f"Error {n_error}", 'value': e}
        items.append(d)
    d = {'item': 'created by', 'value':self._created_by}
    items.append(d)
    d = {'item':'number of individuals', 'value': str(len(self._individuals))}
    items.append(d)
    n_hpo_columns = sum([1 for encoder in self._index_to_decoder.values() if encoder.is_hpo()])
    d = {'item':'number of HPO columns', 'value': str(n_hpo_columns)}
    items.append(d)
    return pd.DataFrame(items)