CohortEncoder
Bases: AbstractEncoder
Map a table of data to Individual/GA4GH Phenopacket Schema objects
Encode a cohort of individuals with clinical data in a table as a collection of GA4GH Phenopackets This classes uses a collection of ColumnMapper objects to map a table using the get_individuals or output_phenopackets methods.
The column_mapper_d is a dictionary with key=column names, and value=Mapper objects. These mappers are responsible for mapping HPO terms. The agemapper and the sexmapper are specialized for the respective columns. The variant mapper is useful if there is a single variant column that is all HGVS or structural variants. In some cases, it is preferable to use the variant_dictionary, which has key=string (cell contents) and value=Hgvs or StructuralVariant object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
tabular data about a cohort |
required |
hpo_cr
|
HpoConceptRecognizer
|
HpoConceptRecognizer for text mining |
required |
column_mapper_list
|
List[ColumnMapper]
|
list of ColumnMapper objects |
required |
individual_column_name
|
str
|
label of column with individual/proband/patient identifier |
required |
metadata
|
PPkt.MetaData
|
GA4GH MetaData object |
required |
age_of_onset_mapper
|
AgeColumnMapper
|
Mapper for the Age of onset column. Defaults to AgeColumnMapper.not_provided() |
not_provided()
|
age_at_last_encounter_mapper
|
AgeColumnMapper
|
Mapper for the Age at last clinical encounter column. Defaults to AgeColumnMapper.not_provided() |
not_provided()
|
sexmapper
|
SexColumnMapper
|
Mapper for the Sex column. Defaults to SexColumnMapper.not_provided(). |
not_provided()
|
variant_mapper
|
VariantColumnMapper
|
column mapper for HGVS-encoded variant column. |
None
|
Source code in pyphetools/creation/cohort_encoder.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
|
__init__(df, hpo_cr, column_mapper_list, individual_column_name, metadata, age_of_onset_mapper=AgeColumnMapper.not_provided(), age_at_last_encounter_mapper=AgeColumnMapper.not_provided(), sexmapper=SexColumnMapper.not_provided(), variant_mapper=None, delimiter=None)
Constructor
Source code in pyphetools/creation/cohort_encoder.py
get_individuals()
Get a list of all Individual objects in the cohort
Returns:
Type | Description |
---|---|
List[Individual]
|
a list of all Individual objects in the cohort |
Source code in pyphetools/creation/cohort_encoder.py
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
|
preview_dataframe()
Generate a dataframe with a preview of the parsed contents
Returns:
Type | Description |
---|---|
pd.DataFrame
|
a DataFrame representing the cohort to check results |
Source code in pyphetools/creation/cohort_encoder.py
set_disease(disease)
Set the disease diagnosis for all patients in the cohort
If all patients in the cohort have the same disease we can set it with this method
Parameters:
Name | Type | Description | Default |
---|---|---|---|
disease
|
Disease
|
Disease diagnosis for the individuals in this cohort |
required |
Source code in pyphetools/creation/cohort_encoder.py
set_disease_dictionary(disease_d)
Set the dictionary of disease ontology terms
For tables with multiple different diseases, we provide a dictionary that has as key the string used in the original table and as value